A Novel Mixed Ligand Complex from the Cocondensation of Cobalt Vapor with a Mixture of the Monodentate Ligand (CH₃)₂NPF₂ and the Bidentate Ligand CH₃N(PF₂)₂: The X-ray Crystal Structure of [CH₃N-(PF₂)₂]₃Co₂[PF₂N(CH₃)₂]₂

M. CHANG, M. G. NEWTON, R. B. KING and T. J. LOTZ Department of Chemistry, University of Georgia, Athens, Georgia 30602, U.S.A.

Received March 23, 1978

We have recently [1] reported the cocondensations of iron vapor with $(CH_3)_2NPF_2$ and with $CH_3N(PF_2)_2$ to give $[(CH_3)_2NPF_2]_5Fe$ and $[CH_3N(PF_2)_2]_4Fe$, respectively. A similar cocondensation of cobalt vapor with $CH_3N(PF_2)_2$ has been found to give $[CH_3N(PF_2)_2]_5Co$ which is identical to the primary product obtained from photolysis of $Co_2(CO)_8$ with excess $CH_3N(PF_2)_2$ in diethyl ether [2] and which undergoes hydrolysis to the previously reported [3] $[(CH_3N(PF_2)_2]_3Co_2(PF_2NHCH_3)_2$ upon chromatography on alumina or Florisil columns. This Communication reports the cocondensation of cobalt vapor with a mixture of the monodentate $(CH_3)_2-NPF_2$ ligand and the bidentate $CH_3N(PF_2)_2$ ligand to give a novel mixed ligand complex.

Approximately 0.5 g (8.5 mg atom) of cobalt metal was evaporated over a period of 30 minutes at 0.0001 mm pressure from an alumina coated tungsten wound crucible heated electrically. The resulting vapors were cocondensed at -196 °C with an excess (\sim 8 ml) of a 1:4 (by volume) CH₃N(PF₂)₂/ (CH₃)₂NPF₂ mixture. Chromatography of the resulting product on Florisil using a mixture of dichloromethane and hexane gave a black band from which was isolated 0.4 g (7.5% yield) of deep violet air- $[CH_3N(PF_2)_2]_3Co_2[PF_2N(CH_3)_2]_2$ 155 °C, identified by elemental analyses (C, H, and N) and the presence of ions [CH₃N(PF₂)₂]₃Co₂[PF₂N- $(CH_3)_2$, $\binom{1}{n}$ (n = 0, 1 and 2) in the mass spectrum. In an attempt to establish the positions of the monodentate and bidentate ligands in [CH₃N(PF₂)₂]₃- $Co_2[PF_2N(CH_3)_2]_2$, the structure of this complex was determined by single crystal X-ray diffraction.

The complex $[CH_3N(PF_2)_2]_3Co_2[PF_2N(CH_3)_2]_2$ forms tetragonal crystals: space group $P4_12_12$; a=b=10.578 (3) Å, c=24.846 (7) Å, Z=8. Least squares anisotropic refinement using the 777 observed reflections (R=0.0471, $R_w=0.0482$) indicates the structure depicted in Figure 1. This structure (I: $L=L'=(CH_3)_2NPF_2$) contains a cobalt—cobalt bond bridged by the three bidentate $CH_3N(PF_2)_2$ ligands similar to the reported [3] structure of the

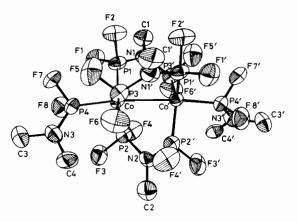


Figure 1. ORTEP drawing of the structure of [CH₃N-(PF₂)₂]₃Co₂[PF₂N(CH₃)₂]₂.

complexes $[CH_3N(PF_2)_2]_3Co_2(CO)_2$ (I: L = L' = CO) and $[CH_3N(PF_2)_2]_3Co_2(PF_2NHCH_3)_2$ (I: L = L' = CH₃NHPF₂). The two monodentate $(CH_3)_2$ -NPF₂ ligands occupy the terminal L positions in this $[CH_3N(PF_2)_2]_3Co_2L_2$ system. As in the structure of $[CH_3N(PF_2)_2]_3Co_2(PF_2NHCH_3)_2$ a two-fold crystallographic axis passes through the NCH₃ group of one of the bridging $CH_3N(PF_2)_2$ ligands. The cobalt—cobalt bond length in $[CH_3N(PF_2)_2]_3$ -CO₂ $[PF_2N(CH_3)_2]_2$ is 2.740 (3) Å as compared with 2.716 (I) Å and 2.769 (I) Å in $[CH_3N(PF_2)_2]_3$ -CO₂ $(CO)_2$ and $[CH_3N(PF_2)_2]_3$ -Co₂ $(CO)_2$ and $[CH_3N(PF_2)_2]_3$ -Co₂ $(CO)_2$ and $[CH_3N(PF_2)_2]_3$ -Co₂ $(CO)_2$ respectively.

In accord with the structure I (L = L' = (CH₃)₂-NPF₂) found for [CH₃N(PF₂)₂]₃Co₂[PF₂N(CH₃)₂]₂, this complex was also obtained by ultraviolet irradiation of [CH₃N(PF₂)₂]₃Co₂(CO)₂ (I: L = L' = CO) with (CH₃)₂NPF₂ in diethyl ether followed by chromatographic separation on Florisil. A byproduct of this reaction is the purple unsymmetrical complex [CH₃N(PF₂)₂]₃Co₂(CO)[PF₂N(CH₃)₂], m.p. 124–125 °C (I: L = CO, L' = (CH₃)₂NPF₂).

This work indicates that the coordinating properties of monodentate $(CH_3)_2NPF_2$ and bidentate $CH_3N(PF_2)_2$ are so different that some metal vapor reactions with mixtures of these ligands can lead to specific products rather than complex mixtures. The exclusive formation of $[CH_3N(PF_2)_2]_3Co_2[PF_2-N(CH_3)_2]_2$ from reactions of cobalt vapor with the

 $CH_3N(PF_2)_2/(CH_3)_2NPF_2$ mixture indicates the strong preference of bidentate $CH_3N(PF_2)_2$ for bridging metal—metal bonds and of monodentate $(CH_3)_2NPF_2$ for terminal positions.

Acknowledgment

We are indebted to the U.S. Air Force Office of Scientific Research for partial support of this work under Grant AFOSR-75-2869. One of us (M.C.) is indebted to the University of Georgia Graduate School for a fellowship.

References

- 1 M. Chang, R. B. King, and M. G. Newton, J. Am. Chem. Soc., in press.
- 2 R. B. King, J. Gimeno, and T. J. Lotz, unpublished results.
- 3 M. G. Newton, R. B. King, M. Chang, N. S. Pantaleo, and J. Gimeno, *Chem Comm.*, 531 (1977).